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The dynamical behaviour of stretchable, orientable microstructure suspended in a 
general two-dimensional fluid flow is investigated. The state of the microstructure in 
question is described by an axial vector; thus the microstructure may consist of 
axisymmetric particles, droplets of fluid, models of polymer molecules or simply a 
line element of the fluid itself. A quantitative measure is developed to distinguish 
conformation(s) (orientations and stretched lengths) of the microstructure that are 
robust and attractive. This leads to a strong flow criterion for microstructure 
suspended in unsteady, spatially inhomogeneous flows in which the effects of history- 
dependence are apparent. The important special case where the influence of the flow 
on the microstructure is time periodic is considered in some detail, owing to the fact 
that one can obtain additional results that concern orientation dynamics. Finally, 
several examples are given which illustrate the application of the present methods 
and the relevant innovations of the approach. Throughout the analysis, special 
attention is given to the robustness of the dynamics to changes in the modelling 
assumptions such as slight three-dimensionality or Brownian diffusion, etc. The 
results of the study demonstrate that using microdynamical behaviour in steady, 
homogeneous flows to derive macroscopic properties (such as strong flow criteria) 
which are then applied to problems in unsteady, spatially inhomogeneous flows can 
lead to incorrect results. Instead, one must account properly for effects due to the 
history of the flow. 

1. Introduction 
The macroscopic properties of heterogeneous fluids that contain particles, drops, 

or molecules depend on the state of the conformation, by which we generally mean 
the concentration distribution and the degree of orientation, stretch or other 
measures of departure from the equilibrium state. In this paper, we assume that the 
heterogeneous phase is uniformly distributed, and that its conformation can be 
described by a single vector. Strictly speaking, a vector description is possible only 
if the microstructure is axisymmetric, but we may hope that the theory can also be 
applied to systems that adopt an elongated but non-axisymmetric shape. The time- 
dependent behaviour of this class of microstructural fluids thus includes a number of 
important problems. For example, the stretching of droplets is related to the break- 
up or emulsification problem. Macromolecular stretching and orientation is thought 
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to  be a contributory factor in drag reduction in extremely dilute solutions of polymer 
molecules. Finally, the dynamical behaviour of orientable filler particles in polymer 
liquids is important in the plastics manufacturing industry. 

Past studies of the dynamics of such systems have focused on the behaviour of 
microstructure in steady, homogeneous flows, which we refer to hereinafter as simple 
Jlows. By definition, simple flows have a velocity gradient tensor field which is 
constant in both time and space. The time evolution of stretch and orientation of the 
microstructure in simple flows is governed by a system of autonomous differential 
equations. These equations can be solved analytically as shown by previous 
investigators (and reviewed in $2). 

I n  spite of the fact that an analytical solution is available, however, most 
researchers have not concentrated on the dynamics of stretch and orientation, but 
rather on the initiation of stretching of the microstructure. Such an investigation 
leads to flow classification schemes on the basis of whether or not a flow is capable 
of initiating stretch (cf. Tanner & Huilgol 1975; Tanner 1976; Astarita 1979; 
Olbricht, Rallison & Leal 1982 ; Nollert & Olbricht 1985). Primarily these efforts are 
aimed a t  developing a ‘strong flow criterion ’, by which is meant a sufficient condition 
for the onset of stretching of the microstructure. The methods employed are those of 
linear stability analysis. 

The dynamical behaviour of microstructure in spatially inhomogeneous or time- 
dependent flows, hereinafter termed complex, is much richer. Whereas simple flows 
lead to autonomous dynamical equations, complex flows lead to non-autonomous 
dynamical equations, i.e. systems with time-dependent forcing. Recall that in 
autonomous differential equations, the independent variable does not enter into the 
equation explicitly ; it enters only implicitly through derivatives. Non-autonomous 
equations contain explicit dependence on the independent variable. 

Clues about the richness of the dynamics of microstructural fluids in complex flows 
can be found in James & Saringer (1982), who examined the flow of a solution of 
macromolecules through small orifices. They found that the strain rate for onset of 
stretching of the macromolecules depended strongly on the shape of the orifice, thus 
implicitly on the history of the flow field experienced by the macromolecule. One 
might argue that this phenomenon can be explained by ‘intelligent ’ application of 
the strong-flow criterion for simple flows, which would respect the t,ime intervals over 
which the microstructure experiences the pre-shearing and extensional flows. 
However, no systematic way of accomplishing this has yet emerged. In the present 
analysis, we demonstrate that the fault lies not in the application of the strong-flow 
criterion, but in the strong-flow criterion itself. The problem is that  the spatially 
inhomogeneous nature of the velocity field (in this instance) is ignored in the 
development of conventional strong-flow criteria. 

Such manifestations of history-dependent behaviour were also discussed by 
Nollert &, Olbricht (1985), who analysed a dumb-bell model for macromolecules in 
periodic extensional flows suggestive of flows in porous media. They found that when 
the velocity gradient (following the particle) is unsteady, the kinematic history of the 
microstructure can strongly affect the conditions required for stretching of the 
particles a t  any instant. However, in their analysis, Nollert & Olbricht approximate 
smoothly (spatially) varying velocity fields of the surrounding flow by sequences of 
steady flow fields with step changes between consecutive members of the sequence. 
This is equivalent to approximating a non-autonomous differential equation by a 
sequence of autonomous equations. We give several graphic demonstrations of the 
fact that this approach can lead to qualitatively incorrect results. I n  fact, Nollert & 
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Olbricht themselves give an example (their figure 8) in which they compare the end- 
to-end length of the dumb-bell model in flows that change continuously and in 
‘equivalent’ flows where the time-dependence is modelled as a sequence of steady 
flows. The latter approximation yields errors of 30% for the particular case they 
consider. Thus the details of the history are important to the response of 
microstructural elements. 

In this paper, we examine the dynamics of microstructure, as described by a model 
dynamical equation, in complex, two-dimensional flows that are time-dependent in 
a frame of reference that moves with the microstructure. We are careful to treat the 
resultant non-autonomous system of equations in a mathematically correct fashion, 
although we find it necessary to develop some new tools as we go along. The model 
system that we treat corresponds to an exact microdynamical equation for some 
types of microstructure and to an approximate model for other types of 
microstructure. In  the model system, it is assumed that the microstructure is small 
compared to the lengthscale over which the surrounding fluid flow changes. 
Moreover, we restrict the analysis to the case of two-dimensional flow. Through 
careful analysis of the structure of the evolution equations, we show that it is possible 
to indicate whether or not a slight relaxation of the basic model assumptions will 
change the dynamics in a qualitative way. We emphasize that flow-microstructure 
systems described by different microdynamical equations will show the same 
qualitative differences in behaviour between simple and complex flows as are shown 
here for our particular model system. 

The main thesis of the present paper is that the non-autonomous nature of the 
conformation evolution equations in complex flows leads to history-dependent 
behaviour that cannot be approximated by the autonomous behaviour in simple 
flows, or in a sequence of simple flows, as some have suggested. The primary results 
of our analysis are: (i) a necessary and sufficient condition for stretching of 
microstructure (i.e. a ‘strong flow criterion’) in complex flows that takes history 
properly into account ; and (ii) conditions for the existence of time-dependent 
attractors for the orientation dynamics of microstructure in complex flows, that are 
analogous to steady, equilibrium orientations for microstructure in simple flows. 

In  order to understand the differences between microdynamics in simple and 
complex flow, we begin in $2 with a careful analysis of the dynamics of microstructure 
in simple flows. I n  $3  we give the analysis that  leads to our history-dependent strong- 
flow criterion, which may be applied to microstructure in any two-dimensional flow. 
In  $4 we demonstrate that history-dependence in time-periodic flows can lead to 
attractors in the orientation dynamics. Finally, we give examples of these history- 
dependent flow phenomena in $5 and our conclusions in $6. In  an Appendix, we 
discuss the relation of our methods to those of conventional dynamical stability 
analysis. 

2. Equations of motion 
Exact microdynamical equations for different types of axisymmetric particles 

have been derived by many researchers. Rigid particles were examined by Bretherton 
(1962), elastic ellipsoidal particles by Hinch (1977), linear elastic dumb-bell models 
for the dynamics of dilute polymer solutions by Kuhn & Kuhn (1945), and linear 
elastic dumb-bells with internal viscosity by Bird et al. (1987). As demonstrated by 
Olbricht et al. (1982), all of these dynamical equations may be collapsed into a single 
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equation for the state vector, with the various specific physical systems corre- 
sponding to particular values of the model parameters : 

We discuss the relevant lengthscales of the microstructure and flow, below. The 
orientation and length of the microstructure are given by the state vector R.  n and 
E are the vorticity and rate-of-strain tensors, respectively, and the parameters G ,  a 
and F correspond to  the shape factor, the elastic modulus of the internal spring and 
the internal viscosity of the microstructure, respectively. Parameter values that 
yield the microdynamical equations for each particular physical system referred to  
above can be found in Olbricht et al. (1982). For our purposes, it is sufficient to note 
that a 2 0, F 2 0 and G( is generally between 0 and 1, although it may exceed 1 for 
certain particles, as shown by Bretherton (1962). It is also worth noting that G = 1 ,  
a = F = 0 yields an equation for microstructure that rotates and stretches as an 
infinitesimal line element of the fluid. For this latter reason, the present analysis has 
application in the study of mixing where the microstructure may be taken to be an 
infinitesimal line element of an interface between two fluids, for example. 

Equation (2.1) describes the time evolution of the orientation and stretching of the 
microstructure, under the assumption that the lengthscale of the microstructural 
elements is large compared to the continuum limit of the suspending fluid but small 
compared to some suitably defined lengthscale of the flow. Thus its evolving 
orientation and length change in response to the local vorticity and rate-of-strain of 
the surrounding fluid flow. Indeed, because the microstructure is smaller than the 
lengthscale over which Jz  and € change, one might be tempted to approximate and 
E as constant, or a t  least as piecewise-constant along the particle path. However, this 
practice is inconsistent with the dynamics of microstructure even in slowly varying 
flow fields, as we show by example in SS3.1 and 5.2. 

I n  practical problems one must be concerned with interactions of the elements of 
the microstructure with solid boundaries and with other elements of the 
microstructure. This introduces other lengthscales that we do not consider here. I n  
practice, the useful range of microstructure lengthscale normally extends over 
several orders of magnitude. We remark that (2.1) permits evolution of the state 
vector to a state of zero or infinite length. At these extremes, however, the modelling 
assumptions implicit in (2.1) break down. One may rectify one problem by including 
Brownian motion, which prevents IRI + O ,  and the other by replacing the linear 
spring by a nonlinear spring, which prevents IRI + co. However, for the purposes of 
this study, the simple model system (2.1) will suffice. 

If the microstructure should be placed in a flow in which n and E do not change 
along the particle path, i.e. when n and E are constant tensors (simple flow), then 
(2.1) is an autonomous ordinary differential equation with an easily obtained 
solution that we review below. When and E change along the particle path, i.e. 
when SZ and E evaluated along the particle path are time dependent (complex flow), 
then (2.1) is non-autonomous and therefore much more difficult to analyse. 

2.1. Coordinate form of the evolution equation 
The model system, equation (2.1), describes the time evolution of the state of 
microstructure in unsteady, spatially inhomogeneous, three-dimensional fluid flow. 
For simplicity, we shall confine our analysis to the special case of incompressible, 
two-dimensional fluid flows. The principal simplifications that result from this 
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restriction are (i) that  the vorticity tensor is described by a single scalar quantity 
(rather than three), and (ii) that the rate-of-strain tensor is described by two scalar 
quantities (rather than five). This is a strong restriction of the flow. However, as we 
show below, one can determine when the results we obtain for purely two- 
dimensional flows will apply to almost two-dimensional flows. I n  fact, the same 
analysis tests the dynamics obtained from the model system for sensitivity to other 
changes in the model equation, which might be due to  Brownian diffusion, nonlinear 
effects, etc. 

We consider two-dimensional fluid flows; thus it is convenient to work in a 
rectangular coordinate system (x, y, z )  in which the flow takes place in the (x, y ) -  
plane. Normally, one would treat this problem in a coordinate system chosen to  
coincide with the principal axes of the rate-of-strain tensor. However, this proves to  
be a cumbersome approach in the complex flow problems we treat below because the 
orientations of these principal axes change from point to point in space and possibly 
also in time. For unity of presentation, therefore, we shall use general rectangular 
coordinates for both the simple and complex flows. 

The instantaneous orientation of the state vector R is therefore described with 
respect to  the coordinate system (x, y ,  z ) .  Because this coordinate system is not 
rotating, there is no danger of introducing non-physical effects. 

Let the orientation of the microstructure be given by its angle a with the x-axis 
and by the angle 6 measured from the (x, y)-plane. If the length of the particle is p,  
then in the rectangular coordinates (x, y, z ) ,  the state vector of the microstructure is 

cos e cos a 
R =  pcosesina . ( psine ) 

These variables are shown in the definition sketch of figure 1.  Note that we are not 
using standard spherical polar coordinates to describe the orientation of the 
microstructure because it is convenient to have 6' = 0 correspond to the alignment of 
the state vector of the microstructure in the plane of the (two-dimensional) flow. 

The vorticity and rate-of-strain tensors in the rectangular coordinate system can 
be written in the form: 

-& i Y 0  
a =  [C 0 "1, E =  [$ - e  0 1 .  (2.3), (2.4) 

0 0  0 0  

Because the forms (2.3), (2.4) are valid whether the tensors are time dependent or 
not, the evolution equations we derive in this section can be applied to both simple 
and complex flows. As the fluid flows we consider are planar, we can make use of the 
stream function $ = $(x, y, t ) .  The flow parameters appearing in (2.3), (2.4) are the 
vorticity 

the elongation e and the shear y .  

(2.6a, b)  

Note that if we were working in the principal axes of the rate-of-strain tensor, the 
quantity y would be zero, and the parameters e and w take different values. Also we 
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t' 

FIQURE 1. Definition sketch for conformation of the microstructure. 

would have an additional flow parameter which indicated the inclination of the 
principal strain axes with respect to some external reference frame. However, we do 
not choose to work in such coordinates for the reasons we have outlined above. 

Physically, the flow parameters may be interpreted as follows. The local rigid 
rotation rate of the flow is given by half the vorticity w .  Locally, the flow also consists 
of a pure straining motion described by the pair of flow parameters e and y .  The 
principal axes of the straining motion are in the directions 

-v -v  

s1 = ' 2;e,+e,, s2 = I 2 ;e,+ey. 2e-(4e2+y ) 2e+(4e2+y ) 
The rate-of-strain in each direction is smsx = (e2 + $y2$ and climin = - (e2 + $y2)i, 
respectively. 

Now we substitute (2.2)-(2.4) into the evolution equation (2.1). To separate the 
different components of the result, we take the inner product with the vectors 

- sin u sin 0 cos u cos e cos 
2 cos e ( co;u) , t (  si:::;), ( c o : y z u ) .  

Mathematically, this is equivalent to taking the projection of dRldt along the 
directions in which the coordinates u, 0 and p are increasing. This yields separate 
evolution equations for u, 0 and p, respectively : 

~ = $-Gesin2u+~Gycos2g, ( 2 . 7 ~ )  
8 = - ~ G ( e c o s 2 u + ~ s i n 2 u ) s i n 2 8 ,  (2.7 b )  

(ecos2u+*sin2u) cos2e-- p =  - [*+ 1 F+l  
G 

( 2 . 7 ~ )  

We remark that in the limit of large F (rigid particle) and for the flow parameters 



Dynamics of suspended microstructure 213 

e = 0, y = - w  = A,  we recover Jeffrey's (1922) classical equations for the rotation of 
a rigid spheroid in uniform shear flow, @ = +Ay2. Note that the fluid flow exerts an 
influence on the orientation and stretching through the flow parameters e, y and w .  
In  a simple flow, these parameters are constant in time. I n  this case, (2.7) comprises 
an autonomous system with a solution that may be obtained by simple integration, 
as we review below. 

Almost all flows, however, are complex. In  this case, the flow parameters depend 
on time through (i) the motion of the microstructure through different physical 
regions of the flow, and (ii) the changes with time of the flow field as a whole. Thus 
the system (2.7) is non-autonomous for complex flow fields, and the time dependent 
flow parameters e ,  y and w may properly be thought of as time-dependent forcing. 

2.2. The dynamics of microstructure in simple flows 
Before we consider the general case of complex flow fields, we review the known 
results for simple flows. As we have explained, the system of (2.7) is autonomous in 
this case, with the parameters e, y and w constant in time. 

The analysis of this section is of importance to  the general arguments of the paper. 
I n  particular, we demonstrate that  the orientation dynamics and strong-flow criteria 
one derives for microstructure in simple flows are based strongly on the assumption 
that the microdynamical equations are autonomous. This assumption is buried 
rather deeply, especially in the strong-flow criteria for microstructure in simple flows 
that have been derived by many researchers. Our aim in this section is to review the 
analysis for simple flows in order that it may be clear, later, why microdynamics and 
strong-flow criteria must be different in complex flows. Along the way, we give 
analytic solutions of the three equations of motion (2.7) so that  understanding a 
specific example is as simple as fixing the flow parameters e, y and w and the 
microstructure constants G, a and F and plotting the results. In  $2.3 we analyse the 
sensitivity of the solutions to changes in the model system. 

We begin by considering the orientation problem (a, e), leaving the stretching 
degree of freedom ( p )  for later. Rather than working with cr(t) and O(t )  as dependent 
variables with t as the independent variable, it is more convenient to  treat 0- as the 
independent variable and to  define 

&) = W0-)), (2.8) 
where t(cr) is the inverse of a(t). The effect of the transformation (2.8) is that  we now 
think of the orientation of the microstructure in a context where time does not 
appear explicitly. This transformation is well defined except at points where 
da/dt = 0, i.e. a t  fixed points of (2 .74 ; however, this limitation is not a problem as we 
shall see. 

The transformation facilitates the qualitative analysis of (2.7a, b ) ,  in the following 
way. We can rewrite (2.7b) using (2.8) as 

e ( t )  = &0-) & ( t ) .  (2.9) 
Hence substituting for daldt and dO/dt from (2.7), we obtain 

- $G(e cos 20- + 9 sin 20-) 
el(a) = sin 24. 

+-Gesin2a++Gycos2a 

Next we integrate this equation from a(0) to a(t): 

(2.10) 

1 tan 4(a(t)) 
tan B (a(0)) 

$J - Ge sin 2a(t) + +Gy cos 2a(t) 
+-Gesin2a(O)+@y cos20-(0) ' 

110 = $log[ 
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tan O ( a ( 2 ) )  = tan O(c(0)) [ - ;;:J (2.11) 

The interpretation of (2.11) is as follows. For a given initial condition ( r ( O ) , O ( O ) ) ,  
equation (2.11) describes a curve in (a,  8)-space. Because the coordinates (r, 0 )  are 
modified spherical polar coordinates, the trajectories (2.11) may be thought of as 
residing on the surface of a sphere. This sphere travels along with the centre of gravity 
of the microstructural element but does not rotate relative to the inertial coordinate 
system (2, y,z). Thus the curve (2.11) may be interpreted as the locus of the 
intersection of R with the spherical surface as the microstructure tumbles around in 
the flow. 

Before we proceed, let us consider (2.7a). Recall that the transformation (2.8) is 
valid provided that daldt =+ 0. From (2.7a), we deduce 

(2.12 a )  

Clearly, the existence of a fixed point where d r l d t  = 0 requires that the discriminant 

D = 4G2e2 -+ G2y2 - m2 (2.12b) 

be positive or zero. One can see from (2.12) that the presence or absence of 
equilibrium orientations is a result of a competition between the rate-of-strain tensor 
that tends to produce a fixed orientation along the principal axis of strain and the 
vorticity that tends to cause the microstructure to rotate. 

In  the absence of vorticity, i.e. when w = 0, (2.12) implies that there will be two 
equilibrium orientations that coincide with the principal axes of the rate-of-strain 
tensor E. Because the flow is assumed to be two-dimensional and incompressible, the 
trace of the rate-of-strain tensor must be zero. In  other words, the two eigenvalues 
of the rate-of-strain tensor have opposite sign, corresponding to an outflow direction 
( + ) and an inflow direction ( - ) relative to a coordinate system travelling with the 
microstructural element, as was shown in $2.1. As the microstructural element 
moves along in a flow with zero vorticity, i t  tends to  align with the relative outflow 
direction, corresponding to the positive eigenvalue of the rate-of-strain tensor. I n  the 
opposite case, when E = 0, and vorticity is non-zero, there are no equilibria and the 
microstructure simply rotates or tumbles in the flow. The relative importance of the 
rate of strain (e, y )  and the vorticity w is signalled by the sign of tQe discriminant D: 
when D < 0, the microstructural element rotates; when D 2 0, the microstructural 
element aligns in some direction. 

For example, the case of uniform shear flow aligned with the x-axis has the flow 
parameters e = 0, y = - w = A. Thus when the shape factor G < 1, as is the case with 
most axisymmetric particles, the discriminant D = (G2- 1 )  A2 is negative and it can 
be seen from (2.12) that  the microstructure simply rotates. On the other hand, 
Bretherton (1962) has shown that there are certain exotic types of microstructure 
with shape factor G > 1,  and in this case it can be seen that there are two equilibrium 
orientations in uniform shear flow. 

Bretherton also observed that microstructure with G = 1 rotates in uniform shear 
flow into alignment with the streamlines of the undisturbed flow. This corresponds to 
the degenerate case D = 0, in which the attracting and repelling equilibria (D > 0) 
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FIGURE 2. Integral curves of the two-dimensional simple-flow orientation problem with negative 
discriminant (D < 0). Here all trajectories are periodic; there are no attractors. Here we have taken 
the parameter values e = 1 ,  y = 0, w = - 4 and G = 1 .  This corresponds to a flow with elliptical 
streamlines fi = xy + x2 + y2. 

IZ 

x 

FIGURE 3. Integral curves of the two-dimensional simple-flow orientation problem with zero 
discriminant (D = 0). There is a single metastable equilibrium orientation. The relevant parameter 
values are e = 2, y = 0, w = -4 and G = 1 .  This corresponds to a parallel flow with fi = 
2xy + x2 + y2. 

coalesce to yield a single metastable equilibrium orientation. We remark that for any 
value of G i t  is possible to construct a flow that yields degenerate dynamics. To see 
this, consider a simple flow field $ = $x2 +;by2. One easily computes e = 0, y = b-a 
and w = -a-b. Thus for a given G ,  we have the degenerate case D = 0 when 

( 1 - G 2 ) b  
(6'- 1 ) -  ( 1  +2G2) b .  

a =  

For example, when G = 1,  we obtain Bretherton's result a = 0 corresponding to 
uniform shear. However, when G < 1, the streamlines of the degenerate flow are 
hyperbolic with respect to non-rotating coordinates moving with the centre of mass 
of the microstructural element, and when G > 1 the streamlines are elliptic. As we 
shall see below, the degenerate case is important in understanding the robustness of 
the dynamics to changes in the model equations. 

Now we return to the solution (2.11). With the information provided by the curves 
(2.11) it is a simple matter to draw the integral curves of (2.7a, b) when the flow 
parameters are constant. These pictures come in three varieties, examples of which 
are given in figures 2, 3 and 4. In  these figures, we have plotted the solution over a 
quarter sphere [0 d c < n, 0 < 8 < $1. The fluid flows that correspond to the 
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FIGURE 4. Integral curves of the two-dimensional simple-flow orientation problem with positive 
discriminant (D > 0). There are two equilibrium orientations, one stable and one unstable. The 
relevant parameter values are e = 3, y = 0, w = -4 and G = 1 .  This coxesponds to flow with 
hyperbolic streamlines $ = 32y + x2 +y2. 

microstructure dynamics shown in figures 2 , 3  and 4 are all simple (two-dimensional) 
flows with parameters e = 1, 2 and 3, respectively, and y = O ,  w = - 4 .  The 
streamlines of the undisturbed flow fields are elliptical, parallel and hyperbolic, 
respectively . 

The curves in figures 2 4  are to be interpreted as follows. A point on a curve gives 
the instantaneous orientation of the state vector of the microstructure relative to the 
inertial frame (x, y,z). Each curve in figures 2 4  represent a diflerent set of initial 
conditions ( u ( O ) ,  O(0)) that are seen to define uniquely the dynamics through (2.11). 
Curves based at different initial conditions intersect only at  equilibrium orientations 
(singular points), when these exist. One can see from the figures that nearly all 
motions are three dimensional, by which we mean that nearly all motions are 
characterized by the state vector of the microstructure moving in or out of the plane 
of the flow. However, there are some motions that take place only in the plane of the 
flow. 

In figure 2, because D < 0, there are no equilibrium orientations. I n  fact, one can 
see from (2.11) and ( 2 . 7 ~ )  that the state vector of the microstructure merely wobbles 
in a periodic fashion. This means that if t? = ~ T C  when u = 0, say, 0 will again be 
when the state vector has rotated around so that u is again 0 (or TC, equivalently). I n  
figure 3 we depict the degenerate case D = 0, where there is a single (metastable) 
equilibrium orientation. The equilibrium orientation is neither wholly stable nor 
unstable, as some neighbouring orientations are attracted while others are repelled. 
In figure 4, where D > 0, there is a single (stable) equilibrium orientation that all 
other orientations approach as time increases, and a second (unstable) equilibrium 
orientation that repels all other orientations. In  such a situation, the state vector 
approaches the stable orientation and remains there for all time. 

Of course, (2.11) provides no information on the speed with which a given trajectory 
in (a, $)-space is followed. However, it is an easy matter to integrate (2.7a) directly 
in the autonomous case, as we show below, and thus reconstruct' (u(t), e( t ) )  through 

Finally, we consider the stretch degree of freedom ( p )  for the simple flow case. As 
(2.11). 

in (2.8) we define 
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FIGURE 5. Integral curves of the orientation in the plane and stretch variables for the parameters 
of figure 2 and F = 1, a = 0. Plotted is the coordinate of the tip of the state vector R, p(t ) /p (O) ,  as 
seen from the centroid of the microstructure for initial orientations o,, = 0 and in. 

where da/dt =k 0. Equation ( 2 . 7 ~ )  can be rewritten as 

(2 .14)  

where we interpret du/dt as a function of u, given by (2 .7a) .  The equation (2 .14)  can 
then be integrated using (2 .11) .  The result is 

(2 .15a)  

The form of the integral I = jdu/(da/dt)  = t depends on the discriminant, as 
follows: when D < 0, 

- 2Ge - ( G y  - w )  tan cr u-a(t) 
t = I(u(O), u(t)) = ] ; (2 .15b)  

( - D)r ( - D ) i  u-a(0) 

when D = 0, 
+ w + (2Ge - G y )  cos 2u+ (2Ge + G y )  sin 2c7 u-'(t) 

; ( 2 . 1 5 ~ )  + w + (2Ge + G y )  cos 2 u -  (2Ge- G y )  sin 2 u  1 u-u(o) 
t = I(a(O), a(t)) = - 

and when D > 0, 

- 2Ge - Di-  ( G y  - w )  tan u 
- 2Ge + 01 - ( G y  - w )  tan u 

(2 .15d)  t = I(a(O), a@)) = 

Note that when w = G y ,  special forms of (2 .15b-d)  apply. 
In order to understand the solution (2 .15) ,  we show plots in figures 5-7 of the 

solution for the same values of the flow parameters used to generate the orientation 
curves of figures 2 4 .  For simplicity, we restrict the plots to those solutions with 
O(0) = 0. One can see from (2 .1)  that if O(0) = 0, then O ( t )  = 0 for all time; thus 
microstructural elements with directors parallel to the (x, y)-plane remain so. In each 
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FIGURE 6. Integral curves of the orientation in the plane and stretch variables for the parameters 
of figure 3 and F = 1, a = 2. Plotted is the coordinate of the tip of the state vector R, p(t ) /p (O) ,  as 
seen from the centroid for various initial orientations go = 0, in, $71 and x .  The dashed line 
represents the metastable orientation of figure 3. 

FIGURE 7. Integral curves of the orientation in the plane and stretch variables for the parameters 
of figure 4 and F = 1, a = 2. Plotted is the coordinate of the tip of the state vector R, p(t ) /p (O) ,  as 
seen from the centroid for various initial orientations go = 0, ix, t x  and x. The microstructure 
stretches in an unbounded fashion as time increases. The dashed line represents the stable 
orientation of figure 4. 

of the figures, the curves correspond to the locus of the tip of the state vector of the 
microstructure as seen from a coordinate system travelling with the centre of gravity 
of the microstructure. The orientation of this coordinate system relative to the 
inertial frame (x, y, z )  is fixed. Different curves in the same figure correspond to  
different initial orientations in the plane. The initial condition for the length of the 
microstructure is p(0)  = 1 ; equivalently, figures 5-7 may be interpreted as plots of 
p ( t ) / p ( 0 )  versus cr(t) .  Again, it is important to keep in mind that 8 = 0 in the solutions 
of figures 5-7. 

In  figure 5 we show the stretch history for the flow parameters of figure 2 with the 
spring constant a = 0. In  this case, the discriminant D < 0 and the stretch history is 
periodic in a; consequently, it is also periodic in time. Note that if we chose a > 0, 
the length of the microstructure would have approached zero for large times. 

I n  figure 6 we show the stretch history for the flow parameters of figure 3 with the 
spring constant a! = 2. Recall that this is the degenerate case with discriminant 
D = 0. One can see that as the microstructure assumes the metastable orientation, the 
state vector contracts under the action of the spring. The metastable orientation of 
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figure 3 is presented by the dashed line in figure 6. As time tends to infinity, the model 
breaks down because the microstructure contracts to a point. 

In figure 7 we show the stretch history for the flow parameters of figure 4 with the 
spring constant a = 2. Here, the discriminant D > 0 and the microstructure quickly 
moves to the stable orientation. The stable orientation in figure 4 is represented by 
the dashed line in figure 7. The flow in this case is sufficiently strongly stretching that 
the state vector lengthens despite the spring constant a =  2. As time tends to 
infinity, the model breaks down because the microstructure extends without bound. 

Olbricht et al. (1982) derive a sufficient condition (known as the strong-flow 
criterion) for stretching to occur in simple flows, namely 

Di > 201. (2.16) 
This criterion is satisfied in the example of figure 7. One may obtain this criterion by 
integrating ( 2 . 7 ~ )  at the equilibrium orientation (a, 0 )  = (a:, 0) ; this yields 

We see that the strong-flow criterion (2.16) is a sufficient condition for stretch at the 
(constant) equilibrium orientation (a, 0 )  = (v:, 0). This orientation corresponds to an 
eigenvector of the velocity gradient tensor in the case G = 1,  and &Di is the 
corresponding eigenvalue. 

This ends our review of the orientation and stretch of microstructural elements for 
simple two-dimensional flows. Because the flow parameters e ,  y and w are constants 
in this case, the system (2.7) is autonomous, and this has permitted us to find the 
equilibrium orientations (2.12) and to transform the equations via (2.8) and (2.13). 
The resulting forms proved to be integrable. As we shall see below, the dynamics of 
microstructure in complex flows are much more interesting. 

A remark about the difference between simple and complex flows is in order. It is 
tempting to analyse the dynamics of microstructure in complex flows in the following 
way. Because such flows are unsteady in the Lagrangian frame, the flow parameters 
e, y and w change with time. One might attempt (incorrectly) to analyse the 
attraction or repulsion of the instantaneous orientation (a = af ( t ) ,  0 = 0 )  given by 
(2.12). This would be incorrect as we demonstrate by example in $3.1, below. The 
reason is that (a = a:, 6 = 0) is not an integral curve of the system (2.7) for complex 
flows, in general. We must develop other techniques for the analysis of microstructure 
in complex flows. 

For the subsequent discussion, it is sufficient to remember that if D is strictly 
positive, there are two equilibria a: and a? in [0, R), one of which is linearly stable and 
the other is linearly unstable. If D = 0, there is a single degenerate (metastable) 
equilibrium and if D < 0 there are no equilibria. 

2.3. Robustness of the model in simple j o w s  
In the final analysis, any investigation of the dynamics of microstructure suspended 
in fluid flows must make certain simplifying assumptions in order to achieve a 
tractable problem. The results of such an investigation are valuable only to the 
extent that they are not obviated by the small differences between the analytical 
problem and the real, physical system. In other words, one must be concerned with 
the sensitivity of the dynamics to small changes in the model equations. 

Implicit in the equation (2.1) is the assumption that the microstructure is 
sufficiently small that the dynamics depend only on the velocity gradient tensor of 
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the surrounding flow and not on higher-order derivatives of the velocity. We could 
imagine that for larger microstructural elements this would not be the case. A second 
important assumption is the restriction to two-dimensional flows. It is important to 
establish that the result of the analysis of $2.2 would not change radically if either 
of these assumptions were to be relaxed slightly. Moreover, we would like to be 
certain that small diffusive effects would not radically alter our results. 

These are questions about the structural stability of the system (2.7) to  
perturbations that include small diffusion, slight three-dimensionality or slightly 
more complicated dependence of the dynamics on the fluid flow. A resum6 of the 
mathematical results concerning the structural stability of various classes of systems 
of differential equations can be found in Arnol’d (1983). The answer to the question 
of structural stability depends in a complicated way on the topology of the space in 
which the vector field of a given system of differential equations resides (e.g. circle, 
torus, sphere, etc.), and on the solutions of the given system. 

In this subsection, we shall consider the structural stability of the system (2.7) in 
the case where the flow parameters e ,  y and w are constant in time, that is to say for 
simple flows. Later, we shall consider the robustness of the model in the case of 
complex flows. For simple flows, we can make use of the results in Arnol’d (1983) to 
deduce that a perturbation to the model equations can change the qualitative nature 
of solutions when D < 0 or D = 0, but that such a perturbation will leave the case 
D > 0 (qualitatively) unchanged. To understand this result from a physical point 
of view, we examine each case in turn. 

As shown in $2.2, when D < 0 all orientation time traces are closed (periodic) 
curves. A small perturbation such as Brownian diffusion, say, would destroy this 
structure of the solution and thus orientation time-traces would no longer be 
periodic. This constitutes a qualitative change in the solutions of the system in 
response to the perturbation, and so we say that the model equations are structurally 
unstable in the case D < 0. In  other words an O ( B )  change in the model equations can 
lead to an O( 1) change in the solutions, possibly over a long time. The effect of weak 
Brownian rotation on the orientation of rigid spheroids in uniform shear flow was 
investigated by Leal & Hinch (1971). Another manifestation of the structural 
instability of the system when D < 0 was noted in Olbricht et al. (1982); 
predominantly two-dimensional flows with D < 0, and sufficiently large norm of the 
velocity gradient tensor are strong flows if there is slight three-dimensionality. 

In  the degenerate case D = 0, there is a single metastable equilibrium orientation. 
This equilibrium orientation is metastable because the eigenvalues of the system (2.7) 
linearized about the equilibrium orientation have zero real part. A change in the 
model equations corresponding to  slight three-dimensionality, say, could change the 
metastable equilibrium to either a stable-unstable pair of equilibria, or cause it to 
disappear altogether. Thus the system (2.7) is structurally unstable in the degenerate 
case D = 0, also. 

The only structurally stable situation is the case D > 0. There are no closed 
orientation solutions in this case, and all singular points are either wholly stable or 
wholly unstable. The solutions for D > 0 will not change much if the model is altered 
slightly to  account for Brownian motion, three-dimensional effects, etc. The 
dynamics in the simple flow case D > 0 are robust. 
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3. The dynamics of microstructure in complex flows 
The most fruitful way of untangling the motions of a dynamical system is often to 

look for attractors. In  the autonomous case of (2.7), the attractor consists of a single 
orientation in the plane of the flow when the discriminant is positive. When the 
discriminant is negative, there is no attractor. When the discriminant is zero, there 
is a single, metastable equilibrium orientation in the plane of the flow. 

In non-autonomous systems, attractors are normally more complicated than a 
simple fixed point. Generally, we seek an integral curve, or solution of the 
differential equations, to which other integral curves are attracted over some interval 
of time. For simplicity, we shall first examine the planar orientation problem (a)  
since ( 2 . 7 ~ )  decouples from ( 2 . 7 b ,  c). In  some respects, our methods are related to 
conventional dynamical stability analysis. A brief discussion of this point is given in 
the Appendix. Before beginning the detailed analysis, perhaps it is useful to recall 
some facts about non-autonomous differential equations. 

3.1. Distinguishing aspects of non-autonomous differential equations 
In order to illustrate some of the differences between autonomous and non- 
autonomous differential equations, we review some basic principles that serve to 
distinguish the two classes of systems. 

PRINCIPLE 1.  Solutions of the equation dxldt = f(x, t )  = 0 with time ‘frozen’, i.e. 
considered as a parameter, are not solutions of dxldt = f ( x ,  t ) ,  in general. The attractors 
onejnds for the system dx/dt = f(x, t )  at a jxed  instant of time are not generally solutions 
of the time dependent system. 

PRINCIPLE 2. The stability problem for a time-dependent integral curve cannot be 
approached by a standard linear stability analysis, i.e. by analysing the eigenvalues of 
the linearization of the disturbance evolution equations. 

PRINCIPLE 3. Integral curves of differential equations that are autonomous except for 
a slow time-dependent term can be qualitatively different in a global sense from the 
integral curves arising from the autonomous part alone. 

These principles may be elementary to some readers of the present paper. However, 
we shall demonstrate each principle in turn with an example for those who may not 
be so familiar with non-autonomous systems. 

Illustration of Principle 1 
We consider the non-autonomous equation 

k( t )  = - (x-t), 

where x is real and t > 0. As an illustration of Principle 1, we set dx/dt = 0 and search 
for an attractor. This (incorrect) procedure would yield x = t as the ‘solution’ to 
dx/dt = 0 ; a stability analysis would then reveal that x = t is a global attractor. This 
procedure is incorrect, however, because x = t is not a solution to the original 
differential equation, as we now show. We can integrate the time-dependent equation 
to obtain the solution 

x ( t )  = t - 1 + e-t( 1 + xo), 

which depends on the initial condition xo. Note that all integral curves x ( t )  quickly 
approach the curve x = t - 1 a t  large times. Thus x = t - 1, which is itself an integral 

8-2 



222 A .  J .  Szeri, S. Wiggins and L. G .  Leal 

curve with initial condition x, = - 1, attracts all other integral curves. Thus the 
solutions of the ‘frozen time’ equations dxldt = 0 have nothing whatsoever to do 
with the attractors of the corresponding non-autonomous system. 

In our analysis of microstructure in complex flows, Principle 1 reveals that 
attractors for the orientation dynamics are not simply given by (a = crr(t), 8 = 0) 
(see equation (2.12)) evaluated a t  an instant of time t. Thus the strong-flow criterion 
for simple flows, which relies on the fact that  (a = a:, 8 = 0 )  is a. solution of (2.7), 
cannot apply to general complex flows. 

Illustration of Principle 2 
The second example is due to  Markus & Yamabe (1960) and is discussed by Hale 

(1969). We consider a two-dimensional, non-autonomous (linear) system of equations 
for x = (xl, x2), 

1.  - 1 +$cos2 t 1 -$sint cos t [ - 1 -$sin t cost - 1 +$sin2 t 
dx 
dt 
- = A(t)x, A(t) = 

A standard linear stability analysis of the equilibrium (xl, x2) = (0 ,O) would proceed 
by analysing the eigenvalues of the disturbance evolution equations dxldt = A(t) x. 
The eigenvalues of the time dependent matrix A(t) are the constants 

which both have negative real parts. It would thus seem that the origin x = 0 is stable 
for this linear system. However, one solution of the time-dependent equation is 

x = e+t( - cos t ) 
sint ’ 

which is unbounded for large times. Because the original equation is linear, any 
general solution must contain this unbounded solution. Thus one cannot test for 
stability in non-autonomous equations by examining the eigenvalues of the (time- 
dependent) matrix associated with the linearized equations ; one must instead 
examine the solution of these equations. 

Illustration of Principle 3 

example is 

which has the solution 

Principle 3 concerns differential equations with slow-time-dependent forcing. One 

6 = sin 2a cos et, 

a(t) = tan-’ exp -sinet tang, , “3 1 
when e > 0. When e > 0,  one observes that every integral curve is periodic with 
period T = 2 x 1 ~ .  

When e = 0,  however, the example equation is autonomous, with solution 

aC,-,(t) = tan-’ [ePt tan a,]. 

Thus when 6 = 0, every integral curve tends to a = in. Despite the fact that we can 
choose 6 )  0 as small as we like, there are important global differences in the 
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solutions of the autonomous ( E  = 0) and non-autonomous ( E  > 0) equations when 
t = O(E-’) or larger. 

A related example that serves to illustrate Principle 3 is the system 

h = 6 ,  

which might be a system of equations for the particle paths in a fluid flow where the 
stream function $ depends on a slowly varying parameter h (for 8 > 0). When 8 = 0, 
the particle paths are level curves of the stream function, thus we say that the 
motion is integrable. When 6 > 0, no matter how small, the particle paths no longer 
coincide with level curves of the stream function, in general. In  fact, for particular 
stream functions, it is well known that the particle paths may be chaotic when e > 0. 
This latter statement means that the particle paths depend so sensitively on their 
initial position that one could not possibly predict the motion forever with only a 
finite accuracy in measurement of the initial position. This could be true despite the 
fact that the equations are deterministic. This phenomenon is the subject of a wealth 
of references on chaotic advection, or Lagrangian turbulence, as it is sometimes 
called, including Aref (1984), Holmes (1984), Chaiken et al. (1986), and Kaper & 
Wiggins (1989), among others. 

With the three Principles in mind, let us return to the flow-microstructure 
problem, which is governed by the set of equations (2.7), but with the flow 
parameters now regarded as functions of time rather than constants. We remark that 
in the case G = 1, where the microstructure has the same dynamic response as a line 
element of the fluid, the discriminant D is four times the ‘persistence of strain’ 
squared, that was recently proposed by Dresselhaus & Tabor (1989) as a means to 
characterize quite general dynamical systems based on the geometry of their 
attracting sets. When applied to flow-microstructure systems, Dresselhaus & Tabor 
show that the value of the persistence of strain is related to the folding and stretching 
of line elements of the fluid owing to the flow. However, this analysis depends on the 
eigenvalues of the disturbance evolution equation linearized about an attracting set 
of interest. In the fluid problems they consider, the attracting sets correspond to 
particle paths in the flow. As we have demonstrated, however, when the linearized 
disturbance evolution equation is time dependent, the instantaneous eigenvalues do 
not capture the dynamical behaviour near the attracting set. For this reason, it is 
clear that the persistence of strain concept would not generally be useful in problems 
where the linearized disturbance evolution equation are time dependent. For our 
particular application, this corresponds to the fact that we cannot base the analysis 
of stretching and orientation of microstructure simply on the instantaneous 
eigenvalues of ‘equilibrium ’ orientations when those ‘equilibrium ’ orientations are 
themselves time dependent, as they are in complex flows. 

3.2. The orientation problem in the plane of the flow 
Now we move on to the analysis of microstructure suspended in complex flows. Our 
goal in 993.2 and 3.3 is to develop an understanding of orientation dynamics of the 
microstructure, and to develop a strong-flow criterion that may be applied to 
microstructure in complex flows. 
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We are interested in finding an integral curve u(t) of (2.7a) to which other integral 
curves are attracted over the time interval [0, T], say. Principle 1 of'S3.1 reveals that 
we cannot find such an attractor as we did in the case of simple flows in $2.2. 
Principle 2 cautions that we cannot identify whether or not an integral curve is an 
attractor by a standard linear stability analysis. Therefore, we must develop new 
techniques as we go along. Our approach to this problem is to consider the difference 
between two orientations at an instant of time 

(3.1) 
where al(t) and a,(t) are two integral curves of ( 2 . 7 ~ )  with time-dependent flow 
parameters. We can obtain an evolution equation for 8(t) by differentiating (3.1) and 
using ( 2 . 7 ~ )  : 

S ( t )  = al(t) - u&), 

S(t)  = c+ l ( t ) -&z( t )  
= [$J - Ge sin 2a1 + iGy cos 2u1] - [!p - Ge sin 2az + !&Jy cos 2a,]. (3.2) 

Next, we use various trigonometric identities to rewrite (3.2) as 

8 = - [2Ge cos ( a1 + u,) + Gy sin ( al + a,)] sin 6. (3.3) 
Now, because the sum of a1 and a, is independent from the difference of u1 and u2, 

we can integrate (3.3) formally to obtain 

We refer to the integral on the right-hand side of (3.4) as the contraction exponent 
of the integral curves al(t) and u,(t) over [0,  TI, or simply the contraction exponent 
(CE) : 

CE [al(()), ~ ~ ( 0 )  ; TJ = [BGe(t) cos (al(t) + u2(t)) +Gy( t )  sin (al(t) + a2(t))] dt. (3.5) 

Note that the CE depends on the initial conditions a , (O)  and a , (O)  rather than the 
entire integral curves (al(t) and a2(t), 0 d t d T) because the integral curves are 
uniquely determined by their initial conditions. The term contraction exponent is 
motivated by rearranging (3.4) to read 

(3.6) 

loT 

taniS(T) = exp [ -CE [u,(O), u,(O) ; TJ] taniS(0). 

Bearing in mind that the tangent function is monotonic, one can see that the 
difference between two integral curves S is less at time T than a t  time 0 if and only 
if the contraction exponent is positive. Thus the Contraction exponent quantifies the 
notion of attraction for the non-autonomous orientation problem in the plane of the 
flow. 

I n  passing, we remark that (3.6) is a discrete time map corresponding to  the 
differential equation (3.3). This means that one application of the discrete time map 
(which maps S(0) to S(T)) is exactly equivalent to integrating the related differential 
equation forward in time over the interval 0 < t < T. 

If we are interested in whether or not a particular integral curve attracts nearby 
integral curves, we can specialize the contraction exponent as follows. Let a(t) be an 
integral curve, and a( t )+~( t ) ,  be a nearby integral curve. Then we have 

C E  [a(O) ,  a(O)+e(O); T] = CE [u(O), r(0);  r]+O(l.(t)l). (3.7) 



Dynamics of suspended microstructure 225 

We define the nearby contraction exponent to be 

and from (3.6), we obtain an infinitesimal version of the discrete time map of the 
difference of the two integral curves: 

e(T) = s(O)exp(-nCE[a(O);TI), (3.9) 
which is valid provided that nCE [a(O) ; r ]  is non-zero. Equation (3.9) is equivalent 
to the solution of the linearized disturbance evolution equation about the integral 
curve a(t ; a(0 ) ) .  Basing our stability characterization of a(t ; a(0)) on (3.9) avoids the 
pathological situation pointed out in Principle 2 of $3.1. 

In this section, we developed the contraction exponent to describe the attraction 
or repulsion of a particular integral curve a(t) for neighbouring integral curves. 
However, the nearby contraction exponent has other important uses, as we shall see 
below. 

3.3. The full dynamical problem for complex JEows 
In the previous section, we were able to quantify the behaviour for the orientation 
problem in the plane of the flow by means of the contraction exponent. To be specific, 
if the contraction exponent for two distinct integral curves is positive (negative), the 
integral curves experience a net convergence (divergence) over the indicated time 
interval. In the neighbourhood of an integral curve, it is sufficient to examine the 
nearby contraction exponent in order to determine whether the integral curve is 
attracting its neighbours. 

Now we move on to consider the out-of-plane and stretching degrees of freedom of 
the microstructure. We shall see that the nearby contraction exponent also gives 
information about these aspects of the dynamics. First, we consider (2.7 b ) .  We divide 
through by sin 28 and integrate from 0 to T: 

(2Gecos2a+Gysin2a)dt. (3.10) 

Note that the right-hand side of (3.10) is just a constant multiplied by the nearby 
contraction exponent for the integral curve a(t) with initial condition a(0). Thus we 
obtain the discrete time map for the 8 coordinate as 

tan8(T) = exp[-$CE[a(O); TI] tanO(0). (3.11) 
Interpreting this result, we find that along attracting integral curves a(t), on which 
nCE [ a ( O )  ; r]  > 0, the state vector of the microstructure moves toward the plane of 
the flow. 

Next we perform a similar integration of the stretch equation ( 2 . 7 ~ ) .  We divide 
( 2 . 7 ~ )  by p and integrate using (3.11) to obtain the discrete time map for p :  

-.)I- 1 +e-ncE[u(o);Tl tan20(0))1’z(F+1) [ T (LnCE [a(O)  ; T] 
T exp - F + l  2 

(3.12) 
Thus along integral curves a(t) that are sufficiently strongly attracting, the 
microstructure will undergo an increase in length. By sufficient attraction, we mean 

-201 > 0. 1 nCE [ a ( O )  ; T] 
T max [ 

4 0 )  

(3.13) 
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The inequality (3.13) is therefore a (history dependent) strong-flow criterion for the 
stretch of microstructure in a complex two-dimensional flow. Equation (3.13) is a 
necessary and sufficient condition for stretch of an element of the microstructure 
over the time interval for some initial orientation. Note that the history-dependent 
strong-flow criterion (3.13) is based on an actual integral curve of the non- 
autonomous equations. Because (3.13) is derived from the solution p( t )  over a time 
interval, we have avoided the pathological situation pointed out in Principle 2 of 
$3.1. 

We remark that if the system (2.7) is autonomous, then (3.13) evaluated on 
( ~ ( 0 )  = (TT (equation ( 2 . 1 2 ~ ) )  gives the simple strong-flow criterion (2.16). Note, 
however, that the simple strong-flow criterion (2.16) cannot be a.pplied to complex 
flows for two reasons : (i) i t  is based on the assumption that ((T:, 0) is a solution of the 
orientation dynamics, which is only true in a simple flow with L)  2 0, and (ii) it is 
based on a linear stability analysis. Thus, the incorrect use of the simple strong-flow 
criterion in complex flows violates Principles 1 and 2 of $3.1. I11 other words, the 
simple strong-flow criterion cannot be used in complex flows because it fails to take 
the history of the microstructure into account. The analysis leading to (3.13) shows 
the correct way in which to account for history, In $5,  we give examples that 
demonstrate these ideas. 

To utilize the results of this section, one would normally integrate ( 2 . 7 ~ )  for the 
complete set of possible initial conditions ( ~ ( 0 )  in [0, n) over the time interval [0, !l'l 
of interest. Next one computes nCE [a(O); for each integral curve. This gives 
information about which integral curves are attracting, the power of that attraction, 
and also the discrete time map for the out-of-plane and stretching degrees of 
freedom. 

We emphasize that the history-dependent strong-flow criterion is applicable to all 
unsteady, spatially inhomogeneous, two-dimensional flows. Before proceeding to 
the examples in $5,  we derive some strong results concerning the orientation 
dynamics and stretching of microstructure in time-periodic flows. 

4. Time-periodic flows 
In this section we derive additional results that apply in the special case when the 

flow parameters E ,  y and w are periodic functions of time, i.e. when the history of the 
microstructure is time-periodic. This important case arises when, for example, the 
particle path through a steady flow is periodic (recirculating), or when the stream 
function of a spatially homogeneous flow varies periodically in time. This situation 
is also important because we can make use of some powerful ideas from dynamical 
systems theory, such as the Poincark map. 

The additional results we derive in the case of time periodic flows consist of 
information about the orientation dynamics of elements of microstructure. Just as 
in simple flows, where there may be a (fixed) attracting equilibrium orientation, we 
show that in time periodic flows there may be a time periodic, globally attracting 
orientation. I n  $4.1, we show how to go about finding this attractor, and we 
demonstrate the connection between the presence of an attractor in the orientation 
dynamics and the stretch of an element of the microstructure. I n  $4.2, we discuss the 
robustness of our results concerning time periodic flows to perturbations of the model 
equations. 
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FIQURE 8. (a )  Integral curves of (2 .7a )  with periodic flow parameters lie on the surface of a torus. 
(b )  Geometric construction of the Poincar6 map of ( 2 . 7 ~ )  with periodic flow parameters. (c) The 
form of the Poincag map of ( 2 . 7 ~ ~ )  with periodic flow parameters. The line uT = uo is drawn for 
reference. 
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4.1. The Poincare' m p  
When the parameters E ,  y and w are periodic functions of time, the vector field that 
describes the evolution of the conformation is also periodic in time, as can be seen 
from (2.7). By knowing how each conformation evolves over one period of the flow 
parameters, we know how any conformation evolves for all time, simply by stmnging 
together the appropriate conformation changes over each period. This is the idea 
behind the Poincar6 map, which is a discrete time map for a differential equation 
with periodic forcing just as (3.6) is a discrete time map corresponding to the 
differential equation (3.3). Thus, the Poincare' map is just a function that is exactly 
equivalent to  integrating the differential evolution equations forward for one period 
of the flow parameters, starting from any arbitrary conformation as the initial 
condition. It is easy to  see that a fixed point of k (integer) applications of the 
Poincar6 map corresponds to a periodic integral curve of the differential equations 
with a period that is k times the period of the flow parameters. For background 
information on these ideas, see Guckenheimer & Holmes (1983), Wiggins (1988), or 
Arnol'd (1983). 

We have, in fact, already computed the components of the Poincar6 map in the 8- 
and p-directions; these are equations (3.11) and (3.12), respectively, where T is now 
to be interpreted as the period of the flow parameters. This leaves the Poincar6 map 
for the orientation in the plane, a, which we now consider. The principal important 
fact that  we exploit is that  the vector field of the differential equation ( 2 . 7 ~ )  is 
periodic in the angle a and in time t .  Just  as the angles a and a+ kx are equivalent, 
for integer k ,  we also have equivalence of times t and t + kT, where T is the period of 
e ,  y and w .  In  other words the integral curves of ( 2 . 7 ~ )  with periodic flow parameters 
lie on the surface of a torus (or doughnut shape), which has coordinates a around one 
circular generator and t around the perpendicular circular generator ; see figure 8 (a). 

Now, the Poincar6 map for a is a discrete time map corresponding to the 
integration of ( 2 . 7 ~ )  forward in time over the interval [0, q. Geometrically, we can 
think of the Poincar6 map as follows. If we take a t = constant slice of the torus in 
figure 8 (a), or mathematically if we define the cross-section 

then the Poincard map is a map from the cross-section to itself, as shown in figure 
8 ( b ) .  Thus if we apply the Poincar6 map once to an initial point a(to), we obtain the 
intersection of the integral curve rooted at  that initial point with the cross-section 
of the torus a t  time t = to + T .  Because the integral curves lie on the surface of a torus, 
the time to + T is identified with (or is equivalent to) to. 

Owing to  the absence of singular points in the vector field of ( 2 . 7 ~ )  on the torus, 
integral curves of (2.7a) cannot cross one another. Thus the Poincar6 map preserves 
orientation (or cyclic ordering) on the circle. Moreover, the map is one to one, onto 
and differentiable with differentiable inverse. (In the compact language of dynamical 
systems, the Poincar6 map is an orientation-preserving diffeomorphism of the circle. 
There is a great deal that is known about such maps, a resume of which can be found 
in Guckenheimer & Holmes (1983).) 

A fixed point of a Poincar6 map corresponds to a periodic integral curve of the 
original differential equation. Furthermore, for Poincar6 maps such as ours, it is 
known that if there is a fixed point then all initial conditions are asymptotically 
periodic. This latter statement means that any orientation integral curve that begins 
a t  an arbitrary initial orientation will eventually be attracted to the periodic integral 
curve that corresponds to  the stable fixed point of the Poincar6 map. Conversely, if 

Ct0 = {( t ,a): t  = to+kT ( k  = 0,  1,2,3,  ...)}, 
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there are no points of period m 2 1, then there are only complicated non-periodic 
orbits in the family of solutions to the underlying differential equation, some of 
which are dense in the circle. 

Physically, periodic integral curves of the orientation have a special meaning. In 
the case where the fluid flow is recirculating (which gives rise to flow parameters of 
period T ;  see $ 5 )  a periodic integral curve of the orientation of period T is equivalent 
to a steady orientation in an Eulerian sense. In other words, if the orientation of the 
particles is periodic with the same period as the time it takes for the microstructure 
to return to the same spatial location, the orientation of the microstructure will 
appear to be constant in a laboratory reference. Thus finding periodic integral curves 
will be of critical importance in applications. 

In what follows in the remainder of this section, we attempt to obtain as much 
qualitative information as we can about the Poincar6 map for u without actually 
computing it. Although we have not computed the Poincard map for u, as we have 
done for 0 and p,  we have computed its derivative, as stated in the following: 

PROPOSITION. Let P be the Poincare' map of equation ( 2 . 7 ~ )  with periodic flow 
parameters. In particular, let P(uo) = uT, where uT is  the value of u obtained by 
integrating 

c+ = $-Ge sin2u++Gycos2u 
forward in time over the period [0, T] of the flow parameters, taking uo as the initial 
condition. Then 

- exp(-nCE[u,;T]). 
dP -- 
duo 

Actually, we have already proved this proposition in deriving (3.9). Note that (4.1) 
applies to any uo, not just to a fixed point of the Poincar6 map. 

The importance piece of information one can glean from (4.1) is that the Poincar6 
map always has a positive derivative because the exponential of a finite quantity is 
never negative or zero. Now we will use this fact, and the fact that the map must be 
one-to-one to arrive a t  a qualitative picture of the Poincar6 map. 

We can integrate (4.1) with respect to uo in order to obtain an expression for the 
Poinear6 map itself. This expression is 

Here P(0)  is the Poincar6 map of the origin, a constant. We chose to perform a 
definite integration of (4.1) starting from 0;  we could have based the integration a t  
a different point, however. 

Next we must pay attention to the fact that the coordinate u is periodic with 
period x. In other words, the values u = 0 and u = x are equivalent, or identified. In 
fact, we can add an integral multiple of x to any value of u and obtain an equivalent 
angle of the microstructure. Because this is true, it must also be true that the initial 
orientations u = 0 and u = x, which are equivalent, must map to the same final 
orientations, possibly with an additive factor of an integral multiple of x. Thus we 
have established the relation 

where k is an integer. From the integral form of the Poincar6 map, (4.2), this yields 
P ( x )  = P ( 0 )  + kx, (4.3) 



230 A .  J .  Szeri, S .  Wiggins and L .  G .  Leal 

We can rule out the possibilities k = 0 and k c 0 because ez > 0 for all x. Also, we can 
rule out the possibilities k 2 2,  because these values of k imply that the Poincare' map 
is multi-valued over the domain 0 < go < x and hence not invertible. Thus we are left 
with the result 

(4 .5)  e-nCEIA;Tldh = n. 1 
This result, coupled with ( 4 . 3 ) ,  implies that the Poincar6 map takes values over the 
range P(0)  < P(a,) c P(0)  + n  over its domain 0 < go < R. 

Now we have enough information to draw a qualitative picture of the Poincare' 
map. We know that the map always has positive slope. From (4.1), we observe 
that for go such that nCE [cr,; r]  > 0, the Poincare' map is relatively flat. Where 
nCE [go; T] c 0, the Poincark map is relatively steep. Also we know that the images 
of the points B,, = 0 and K differ by x. With this in mind, the Poincare' map must 
appear qualitatively like the sketch in figure 8 ( c ) .  This picture is drawn in a standard 
way, in which no distinction is made between the equivalent angles B = a+n where 
0 < a < n, and g = a. For this reason, the images of the points 0 and n are equal, and 
the graph runs off the top of the page and jumps back onto the bottom. 

We can identify non-degenerate fixed points as transverse intersections of the 
Poincard map with the line gT = go, which is also drawn in figure 8 ( c ) .  Degenerate 
fixed points are points where P(B,)  just touches the line gT = (T,) with a slope of 1, 
tangentially (i.e. nCE = 0 there). If there are no intersections of P ( g , )  with the line 
vT = go, then there are no integral curves of period T of (2 .7a) .  There may, however, 
be integral curves of (2 .7a)  of period mT (m > 1 )  corresponding to fixed points of m 
applications of the Poincare' map. 

The technique of analysis of time periodic examples is as follows. First, we 
integrate ( 2 . 7 ~ )  for the range of initial conditions. Next, we check the Poincare' map, 
which will look like figure 8 ( c )  for intersections of P(a,) with the line crT = v,. 
Assuming that there are such points, we know from the theory of circle maps that 
all initial conditions are eventually attracted to the stable fixed points. Then the out- 
of-plane and stretching dynamics of the microstructure is given simply by the nearby 
contraction exponent of these periodic points and the discrete tiine maps (3 .11)  and 
(3 .12) .  We give examples that illustrate these ideas in $5. 

4.2.  Robustness of the model in time-periodic floius 
The structural stability of the model system (2 .7)  for time-periodic flows differs from 
the case of simple flows that was analysed in $2.3.  The reason is that  the equations 
are non-autonomous rather than autonomous, and so the topology of the space where 
the vector field of (2 .7)  resides has changed. In the time-periodic case, we find that 
if (and only if) each fixed point of the Poincare' map is non-degenerate, then the 
qualitative nature of the dynamics is insensitive to small changes in the model 
equations that might account for Brownian motion, three-dimensionality , etc. 

To see why this is so, consider a degenerate fixed point of the Poincare' map of 
( 2 . 7 ~ ) .  The fixed point is degenerate because the Poincare' map intersects the line 
crT = B, tangentially a t  the fixed point. A slight change in the model equations can 
shift the Poincare' map relative to the line gT = go, yielding either no fixed point or 
two fixed points. This is analogous to the degenerate case in simple flows D = 0. Thus 
the presence of degenerate equilibria implies structural instability. To see why the 
existence of only non-degenerate equilibria implies structural stability, we refer the 
reader to Arnol'd (1983).  
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5. Examples 
In  order to demonstrate the application of our methods, we give three detailed 

examples of complex flow-microstructure systems. The types of flows we consider are 
open, steady and spatially inhomogeneous ; closed, unsteady and homogeneous ; and 
closed, steady and inhomogeneous. In  doing these examples, we concentrate on the 
differences between the present analysis of the dynamics of microstructure and the 
analysis based on the assumption of simple flow. Techniques of the latter variety 
prove to be incapable of capturing the rich dynamics in these complex-flow 
examples. 

5.1. Microstructure in a boundary layer 
As a first example of the application of our methods, we consider the problem of the 
dynamics of microstructure in a particular boundary-layer flow. The outer flow of the 
problem is convergent, purely radial motion between two planar solid boundaries 
that intersect. Of course, this flow has a singularity a t  the point of intersection of the 
walls, but we are concerned instead with the motion in the boundary layer, away 
from the point of intersection. The solution of the steady fluid flow is due to 
Pohlhausen (1921); see also Rosenhead (1963, §V. 17). This example is particularly 
illustrative because we are able to do the analysis in closed form. At the end of the 
example, we will compare the simple and complex strong-flow criteria. For this 
particular example, the simple strong-flow criterion is not conservative enough. the 
interpretation of these criteria will be clear by the time we have finished with this 
example. 

The outer flow for this problem is 

-U0l  
U(x)  = -, 

X 

where x > 0 and Uo is the speed when x = 1 ; the negative sign ensures convergent 
radial flow. The similarity variable is 

where v is the kinematic viscosity. The boundary-layer solution, due to Pohlhausen, 
is 

T d T ) ,  (5.2a, b)  - (U0 Zv)f 
X 

u = U(4g(rl) ,  v = 

where 

assumes values between 0 (at the solid wall) and 1 (at the outer flow). 

flow parameters ; we obtain : 
The particle paths are straight lines 7 = T ~ .  This simplifies the calculation of the 

IT 
e ( t )  = - 9 IT = uo l[g(To)  + T O  s'(ro)l1 

x"t) 
( 5 . 3 4  

G 
w( t )  = - 

x"t) ' 
(5.3c) 
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where x(t) is the x-coordinate of the particle path, 

x(t) = (xi -2lU0 g(7,)  t)i. (5.4) 
Note that (5.4) does not make sense after the microstructure reaches the point of 
convergence of the solid boundaries, x = 0. The evolution equation ( 2 . 7 ~ )  is 

G7 cos2u. 
d a  w Ga 

sin 2u + - -=--- 
dt 2x2(t) x2(t) 2X2(t) 

This equation can be made autonomous with respect to the new time 7, related to 
t through 

The new autonomous equation has a single, globally attracting orientation ur and a 
repelling orientation a! given by (2.12) with e ,  y and o replaced by the over-barred 
flow parameters. Qualitatively, the orientation dynamics are similar to what is 
shown in figure 4, but with a different time variable. 

Next, we compare the two strong-flow criteria (2.16) and (3.13). To apply (3.13), 
we shall need the nearby contraction exponent a t  the globally attracting solution, 
which is easily computed as 

IOT $) 
nCE [ur, T] = (2Gecos (2~:) + Gysin (2crf)) 

= D ~ T ( T ) ,  

where the over-barred discriminant is formed from the over-barred flow parameters, 
according to (2.12 b ) .  Thus the complex strong-flow criterion, equation (3.13), yields 

> 2a. 
Db(  T) 

T (5.5) 

On the other hand, we evaluate the simple strong-flow criterion (2.16). We find 
that the discriminant D depends on time, through the relation 

Thus the simple strong-flow criterion at  any instant of time is 

Now let us perform the following thought experiment. Choose a time interval 
[0, T], with TI[  < 1,  where [ = x~/2 lU0g(~ , ) ,  so as to avoid the singularity in the flow 
field. Next fix the parameter a so that (5.5) with an equality sign is satisfied. Thus, 
over the time interval [0, T], the maximum stretch of the microstructure is zero, as 
one can see from (3.12). Next we examine the simple strong-flow criterion. For the 
same value of a, it is a simple matter to show that the flow is weak (in the simple 
sense) for 

t E  io. + log ( 1 " I  - TIC) ' 
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and strong (in the simple sense) for 

'[ "log ( I  - T/() TI. 

Thus, despite the fact that the microstructure appears to experience a strong flow in 
the simple sense for a finite sub-interval of [0, TI, there is no net stretch. Moreover, 
for a fixed value of E,  the fraction of the interval [0, r]  in which the flow is strong (in 
the simple sense) varies from 0 to 100 % as the end point of the interval T varies from 

to 0. 
The interpretation of the two strong-flow criteria is now clear. The complex strong- 

flow criterion is a sufficient condition for the stretch of the microstructure over an 
interval of time. It is based on a true integral curve of the non-autonomous 
orientation equation. The simple strong-flow criterion is a sufficient condition for 
stretch of the microstructure at an instant of time. It is based on a particular 
assumed integral curve a(t) = v+*, a constant, which is an integral curve only for the 
autonomous equations, in general. 

We remark that in this example (2.16) and (3.13) yield the same result if we use 
the time averaged value of D(t )  in (2.16). It should be emphasized that this is not 
generally the case. To analyse the microstructural behaviour correctly, one must 
apply (3.13). 

Finally, it is clear that the complex strong-flow criterion for this example (5.5) 
shows a strong dependence on the particular time interval taken. In open-flow 
problems, the choice of this time interval is not so clear as in flows in which the flow 
parameters are periodic. In practice, this choice must be made so as to include in the 
time interval flow features that are important from the standpoint of orienting and 
stretching the microstructure. These features include close passage near to a 
stagnation point, or passage near streamlines connecting stagnation points or 
passage near solid boundaries, as in this example. 

5.2.  Microstructure in time dependent stagnation point j b w  
To demonstrate the relationship between the Poincar6 map and the nearby 
contraction exponent in recirculating flows, we return to the third example of $3.1. 
We set G = 1, w = 0, y = 0 and e = -cos (et) in ( 2 . 7 ~ ) .  This example corresponds to 
a spatially homogeneous but temporally periodic flow with the stream function 

$.=- xy COS ( B t ) .  

This flow is a simple stagnation point flow in which for half the period the y-axis is 
the outflow axis and the x-axis is the inflow axis. The flow reverses at every integer 
multiple of +T. The particle paths for this example are themselves periodic, being 
hyperbolae with asymptotes x = 0 and y = 0. Equation ( 2 . 7 ~ )  becomes 

6 = sin (2a) cos ( E t ) ,  

which has the solution 

a(t) = tan-' exp - s in (~ t )  tan(a,) . ": 1 1  
(5.7) 

Note that the solution is periodic with period T = 2 ~ / e  for any e > 0. If E = 0, 
however, the solution is not periodic : 

cr,=,(t) = tan-' [ePt tan (a,)]. 
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I n  fact, every initial condition in the e = 0 (autonomous) system limits on the point 
(T = in, whereas every initial condition in the e > 0 system is periodic. This is an 
important point. Despite the fact that  the non-autonomous part of the orientation 
equation is O(e2) for E small, the dynamics for E > 0 are in no way closely 
approximated by the ‘nearby’ autonomous system with e = 0 when t = O(E-’). 

Continuing with the example, we next compute the nearby contraction exponent, 

nCE [(T,; = - 2 cos ( E t )  cos ( 2 4 t ;  go)) dt. (5.9) JOT 
We substitute (5.8) into (5.9) and take the time interval T to be 2 ~ 1 . 5 ,  the period of 
the flow parameters. We obtain nCE [go ; TI = 0 for all uo. Thus the derivative of the 
Poincard map is 1 everywhere. This matches the result of direct calculation of the 
Poincard map from (5.8), which yields P(ao)  = ( T ~  for all go. 

Because the nearby contraction exponent is zero, we conclude from the complex 
strong-flow criterion (3.13) that there is no net stretch of the microstructure in this 
flow. This is an interesting point, because the presence of a stagnation point in a 
steady, homogeneous flow is normally indicative of a strong flow. It is the unsteady 
nature of this example that prevents this from being the case. 

5.3. Microstructure i n  the $ow between eccentric rotating cylinders 
Finally, we consider the example of microstructure in the (Stokes) flow between 
eccentric rotating cylinders. The flow of a single-phase Newtonian fluid in this 
geometry has been studied extensively in the past, primarily owing to the important 
application to journal bearings. The first investigation by Reynolds (1986) neglected 
inertial effects and was restricted to the case of a narrow gap. Arbitrary gaps have 
since been considered by many authors; the most complete analysis is presented in 
Ballal & Rivlin (1977). Using a bipolar coordinate system, it is possible to solve the 
Stokes equations for the stream function. Our interest lies in the dynamics of 
microstructure suspended in this recirculating flow. 

A single choice of operating parameters (cylinder diameters, eccentricity and 
rotation rates) suffices to demonstrate the application of the present analysis. Our 
primary goal is to explore the differences between our methods for the analysis of 
microstructural dynamics and the methods based on the assumption of simple flow. 
In this regard, it is easiest to compare directly the predictions of the two strong-flow 
criteria; (2.16) derived from the autonomous evolution equations that govern the 
dynamics of microstructure in simple flows, and (3.13), which we derived from the 
non-autonomous evolution equations that arise in complex flows. We observe the 
startling result that there are particle paths in the flow along which the simple 
strong-flow criterion predicts there is no particle stretching despite the fact that 
stretching does occur. We return to this point later. 

To begin the analysis, suppose we have two cylinders arranged one within the 
other, but that the axes of the two cylinders although parallel do not coincide. The 
radius of the outer cylinder is R, and that of the inner cylinder is R,. I n  rectangular 
coordinates, the axes of the inner and outer cylinders are located a t  (Z-s,O) and 
( I ,  0 ) ,  respectively, where E is the eccentricity parameter. We define the bipolar 
coordinate system (6, y) through the relations 

- b sinh f b sin y 
X =  (5.10a, b )  coshf-cosy’ ’ =  cosht-cosy’ 
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where b is a constant related to R,, R, and E .  The stream function that solves the 
Stokes problem in this domain is given by 

( 5 . 1 1 ~ )  

where 
Po([)  = (A, + C, [) cosh [+ (B, +Do [) sinh [, (5.11b) 

J',([) = A ,  cosh 2[+B, sinh 2[+ C, [+D,. (5 .11~)  

The geometrical relations of the constants b,  A,, B,, C, and D, to the parameters R,, 
R,, and E and the rotation rates of the cylinders a, and SZ, are given by Ballal & 
Rivlin. 

Owing to the complicated nature of the stream function, we cannot integrate the 
equations 

a' a' 
aY 

W )  = -(x, y), Y(t) = --(x, ax y) (5.12) 

analytically to obtain the particle paths; we must do so numerically. Consequently, 
it is not practical to compute the flow parameters analytically, and so we resort to 
finite-difference techniques. The particle paths are first obtained from (5.12) where 
the stream function is given by (5.11), and the numerical integration is performed 
using a standard fourth-order Runge-Kutta algorithm. Next, a t  each point along the 
(closed) particle path, we obtain the flow parameters e, y and o through finite 
(central) difference analogues of (2.5) and (2.6). Then we solve ( 2 . 7 ~ )  for the integral 
curves a(t ; go), which correspond uniquely to the particular initial orientations no. 
The latter problem is solved using a standard predictor-corrector algorithm. The 
shape factor we use is G = 0.98. Next, we perform a simple integration to calculate 
the nearby contraction exponent for a given initial orientation, and finally analyse 
the dynamics. 

We choose R, = 1.0, R, = 0.3 and 6 = 0.525 with rotation rates of Q, = 1.0 
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FIGURE 10. (a) Nearby contraction exponent versus initial orientation for the shortest particle path 
shown in figure 9, which begins at x = 1.35. (b) Poincark map of the initial orientation for the 
shortest particle path shown in figure 9. (c) Time trace of the discriminant evaluated along the 
shortest particle path shown in figure 9. 

a, = 20.0, both counterclockwise. This choice of parameters corresponds to figure 
14(e) of Ballall% Rivlin. In  this interesting flow situation, there are two large eddies 
between the cylinders. In figure 9, we show some representative particle paths in the 
flow, all of which are closed curves in the (2, y)-plane. 

We investigate the dynamics of microstructure that follow the shortest particle 
path of those shown in figure 9, which begins at  x = 1.35. We follow the procedure 
outlined above, and obtain the nearby contraction exponent for the entire range of 
possible initial orientations, which is plotted in figure lO(a). One observes that 
nCE [ao ; r ]  is both positive and negative over the set of initial orientations go, as we 
expect for reasons discussed in $4.1. The Poincark map, aT = P(ao) versus a, also 
takes the expected form, as shown in figure 10 ( b ) .  Note that there is a single unstable 
fixed point at approximately a. = 2.17 radians and a single stable fixed point a t  
approximately a. = 0.96 radians. From the discussion of $4, we know that all initial 
orientations are attracted to the periodic integral curve that passes through 
a = 0.96, i.e. the periodic integral curve is a stable (global) attractor. The nearby 
contraction exponent evaluated on the stable attractor is nCE [0.96, r]  = 0.27, and 
the period of the flow parameters on this particle path is computed to be T = 4.19. 
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Thus, the complex strong-flow criterion, equation (3.13), allows us to conclude that 
there is stretch of the microstructure that follows the attracting periodic integral 
curve whenever a < acrit = 0.032, that is to say whenever the spring constant a is 
weaker than acrit. 

Note that there are other (non-periodic) integral curves, in particular one for which 
go = 0.77 radians, that have a larger critical a. However, since all integral curves 
approach the globally attracting periodic integral curve, it seems more sensible to 
define acrit as the critical spring constant on the attracting periodic integral curve. 
Thus we have shown that on this particle path there is an attracting periodic integral 
curve on which stretch of the microstructure takes place whenever a < 0.032. As we 
now show, one could not come to this conclusion on the basis of the simple strong- 
flow criterion. 

Recall that the simple strong-flow criterion is based on the discriminant D, which 
is formed from the flow parameters. Because this example flow is inhomogeneous, D 
changes along the particle path. Numerically, we have computed D(t)  and found it 
to be everywhere negative in the interval [0, T] along this particle path; a plot of the 
time trace of D is given in figure lO(c). Thus, by the simple strong-flow criterion, 
equation (2.16), one would expect no stretch of the microstructure even if a = O !  But 
this is not the case, as we have shown. 

We can relate this result to the gallery of examples in 83.1. There we found that 
stability of unsteady disturbance evolution equations is not determined by the 
eigenvalues of the matrix associated with the linearized equations. The simple strong- 
flow criterion derived in 92.2 is based on the eigenvalue (in the p-direction) of the 
matrix associated with the linearization a t  an equilibrium orientation. Thus the 
simple strong-flow criterion cannot be expected to apply when the linearization of 
(2.7) is time dependent, i.e. in a flow that is unsteady in a Lagrangian sense, or as seen 
from the moving microstructure. 

Within the context of this example, we have investigated the dynamics of 
microstructure that follow other particle paths. In every case we have examined, we 
find either a single periodic attracting integral curve, or no attractor of the same 
period as the particle path. For elements of the microstructure that pass close to the 
free stagnation points in the interior of the flow (there are two such points) we find 
there are periodic integral curves of the orientation that are ferociously attractive. 

6. Conclusions 
We have examined the dynamics of microstructure in complex two-dimensional 

fluid flows. We began by deriving the evolution equations for the conformation with 
respect to coordinates. Next we reviewed the range of possible behaviour in the case 
when the flow field is simple. When we moved on to consider the dynamical problem 
in complex flow fields, we found that the nature of the flow fields introduced much 
richer dynamics by changing the microdynamical evolution equations from 
autonomous to non-autonomous. This was clear in the examples of $53.1 and 5. It 
was necessary to develop carefully the notion of attraction (or stability) of a 
conformation that was applicable to the problem. This led to a complex strong-flow 
criterion that is unrelated to conventional (simple) strong-flow criteria developed 
through the study of simple flows, as well as to an understanding of the dynamics as 
a whole. We were able to obtain additional results concerning orientation dynamics 
for the class of problems in which the influence of the flow on the microstructure is 
periodic in time. 
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In the past, researchers have approached complex-flow problems by looking a t  
them as sequences of simple flows. We have attempted to demonstrate that the non- 
autonomous nature of the conformation evolution equations in complex flows leads 
to  fundamentally different, history-dependent behaviour that cannot be approxi- 
mated by autonomous behaviour, as some have attempted. Even in slowly- 
varying flow fields, the history dependent behaviour of the microstructure 
conformation is manifest. 
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Appendix. Relation of the present analysis to conventional dynamical 
stability analysis 

In  this Appendix, we discuss how our analysis of the microdynamical equations 
relates to  some conventional techniques of analysis of dynamical systems. These 
remarks are intended for those readers with a deeper interest in dynamical systems. 
For background information on this broad subject, see Amol'd (1973) or 
Guckenheimer & Holmes (1983). A particularly helpful discussion is available in 
Goldhirsch, Sulem & Orszag (1987). 

We begin with a quick review of the standard analysis of the stability of a general 
integral curve in a one-dimensional ordinary differential equation. Given such an 
equation dxldt =f(x, t ) ,  and an integral curve x = ( ( t ) ,  we investigate the dynamics 
relative to the integral curve by defining the variable y ( t )  through x = t ( t )  + vy ( t ) ,  
where v is a parameter. The evolution equation for y is then 

Taking the limit as v approaches zero, we obtain the linearization 

- dy = f ( ( ( t ) ,  t )  y ( t ) .  
dt ax 

The solution of this equation may be written as 

where t, > t, and 
Y U 2 )  = MP,, t l l Y ( t l ) ,  

A suitable Lyapunov function for the integral curve x = c( t )  is simplyf(y) = y2( t ) .  We 
have stability whenever f(y(t,)) < f(y(t,)) for t, > t,, that  is to say whenever 

y2(tz)  = Jm,, 41Y2( t , )  < Y'(t1). (A 5 )  

Thus the integral curve x = [ ( t )  is stable over the interval Itl, t,] when M2[tz ,  t l ]  < 1. 
The domain of attraction of the integral curve x = E(t)  over the interval [tl, t,] is 
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found as follows. We keep the same Lyapunov function, but now we use the solution 
of the nonlinear equation (A 1) rather than the linearized form (A 3). The solution of 
(A 1)  for u not necessarily small may be written formally as 

Y(t2)  = " t 2 ,  4, Y(t1)l. (A 6) 
The basin of attraction of z = LJt) is then defined to be the set of y(tl) such that 

analogous to (A 5). In specific examples, the basin of attraction may or may not be 
an easy set to find. 

Our analysis of (2.7a) is similar in some respect to the analysis just presented but 
different in others. In  $3.2, we begin by solving the nonlinear disturbance evolution 
equation, which yields (3.6) analogous to (A 6), above. Rather than linearizing the 
disturbance evolution equation, we linearize its solution to obtain (3.9) analogous to 
(A 4). Thus for u (of the prior analysis) small, s( t )  of $3.2 is analogous to vy(t). For 
general u,S(t) of (3.1) is the analogue of vy ( t ) .  

The stability criterion (A 5) becomes 

e-2nCE[uo;Tl < 1 or nCE [a,; r ]  > 0. 

This is obtained by consideration of the Lyapunov function f(S) = S2(t) .  Because we 
began by solving the nonlinear disturbance evolution equation, it is a simple matter 
to find the basin of attraction of an attracting integral curve. We make use of (3.6) 
in (A 7 )  and the monotonicity of the tangent and arctangent functions. This yields 

(2tan-1 [e-CE[uo,~o+&;Tl t an (t80)l>2 < a:, 
whenever CE [a,, go +So ; !PI > 0. This defines the basin of attraction of the integral 
curve a(t; a,) over the time interval [0, TI. 

We remark that in the stability analysis, it is important to note that stability is 
related to the eigenvalues of the map M and not to the eigenvalues of the linearized 
equation, in general (see $3.1 for examples of what can happen if this is not taken into 
account). The reason for this is that we are considering the stability of a time 
dependent integral curve 2 = g( t ) .  In the special case when 6 and f do not depend on 
time, then M[t, ,  tl] = exp [af/ax(fl) ( t 2 - t 1 ) ] ,  and stability is determined by the 
eigenvalues of the linearized equations, assuming their real parts are different from 
zero, of course. 

An additional remark about Lyapunov exponents is in order. These numbers are 
particularly useful for characterization of attractors on which the motion is ergodic, 
i.e. when the motion eventually forgets its initial condition. For our generic one- 
dimensional system, the Lyapunov exponent is defined to be 

The analogous definition for the orientation problem is 

If, for example, a(t ; v0)  is a periodic integral curve of period 7, then the corresponding 
Lyapunov exponent is ,u = -nCE [ao ; 7]/7. Thus, the periodic integral curve is stable 
for nCE [cr,; 71 > 0, as we already know. 
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In open-flow problems, or rather in problems where the flow parameters are not 
periodic in time, the Lyapunov exponent seems not to  be a useful diagnostic 
quantity. The reason is that in two-(space) dimensional fluid flows, regions of 
relatively strong flow tend to be separated by large regions of relatively weak flow. 
Thus we expect nCE to be very different from zero only over finite time intervals. 
Because the definition of the Lyapunov exponent involves a limit as the time interval 
goes to infinity, the Lyapunov exponents computed for open flows would probably 
be nearly zero, despite the fact that interesting dynamics may occur over finite time 
intervals. 
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